124 research outputs found

    Experimental experience with flexible structures

    Get PDF
    The focus is on a flexible structure experiment developed at the California Institute of Technology. The main thrust of the experiment is to address the identification and robust control issues associated with large space structures by capturing their characteristics in the laboratory. The design, modeling, identification and control objectives will be discussed. Also, the subject of uncertainty in structural plant models and the frequency shaping of performance objectives will be expounded upon. Theoretical and experimental results of control laws designed using the identified model and uncertainty descriptions will be presented

    Identification of flexible structures for robust control

    Get PDF
    Documentation is provided of the authors' experience with modeling and identification of an experimental flexible structure for the purpose of control design, with the primary aim being to motivate some important research directions in this area. A multi-input/multi-output (MIMO) model of the structure is generated using the finite element method. This model is inadequate for control design, due to its large variation from the experimental data. Chebyshev polynomials are employed to fit the data with single-input/multi-output (SIMO) transfer function models. Combining these SIMO models leads to a MIMO model with more modes than the original finite element model. To find a physically motivated model, an ad hoc model reduction technique which uses a priori knowledge of the structure is developed. The ad hoc approach is compared with balanced realization model reduction to determine its benefits. Descriptions of the errors between the model and experimental data are formulated for robust control design. Plots of select transfer function models and experimental data are included

    Robustness and performance trade-offs in control design for flexible structures

    Get PDF
    Linear control design models for flexible structures are only an approximation to the “real” structural system. There are always modeling errors or uncertainty present. Descriptions of these uncertainties determine the trade-off between achievable performance and robustness of the control design. In this paper it is shown that a controller synthesized for a plant model which is not described accurately by the nominal and uncertainty models may be unstable or exhibit poor performance when implemented on the actual system. In contrast, accurate structured uncertainty descriptions lead to controllers which achieve high performance when implemented on the experimental facility. It is also shown that similar performance, theoretically and experimentally, is obtained for a surprisingly wide range of uncertain levels in the design model. This suggests that while it is important to have reasonable structured uncertainty models, it may not always be necessary to pin down precise levels (i.e., weights) of uncertainty. Experimental results are presented which substantiate these conclusions

    Simplification Methods for Sum-of-Squares Programs

    Full text link
    A sum-of-squares is a polynomial that can be expressed as a sum of squares of other polynomials. Determining if a sum-of-squares decomposition exists for a given polynomial is equivalent to a linear matrix inequality feasibility problem. The computation required to solve the feasibility problem depends on the number of monomials used in the decomposition. The Newton polytope is a method to prune unnecessary monomials from the decomposition. This method requires the construction of a convex hull and this can be time consuming for polynomials with many terms. This paper presents a new algorithm for removing monomials based on a simple property of positive semidefinite matrices. It returns a set of monomials that is never larger than the set returned by the Newton polytope method and, for some polynomials, is a strictly smaller set. Moreover, the algorithm takes significantly less computation than the convex hull construction. This algorithm is then extended to a more general simplification method for sum-of-squares programming.Comment: 6 pages, 2 figure

    Optical flow: a curve evolution approach

    Get PDF
    ©1995 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or distribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.DOI: 10.1109/ICIP.1995.537569Presented at the 1995 International Conference on Image Processing, October 23-26, 1995, Washington, DC, USA.A novel approach for the computation of optical flow based on an L 1 type minimization is presented. It is shown that the approach has inherent advantages since it does not smooth the flow-velocity across the edges and hence preserves edge information. A numerical approach based on computation of evolving curves is proposed for computing the optical flow field and results of experiments are presented

    Feedback control laws for highly maneuverable aircraft

    Get PDF
    The results of a study of the application of H infinity and mu synthesis techniques to the design of feedback control laws for the longitudinal dynamics of the High Angle of Attack Research Vehicle (HARV) are presented. The objective of this study is to develop methods for the design of feedback control laws which cause the closed loop longitudinal dynamics of the HARV to meet handling quality specifications over the entire flight envelope. Control law designs are based on models of the HARV linearized at various flight conditions. The control laws are evaluated by both linear and nonlinear simulations of typical maneuvers. The fixed gain control laws resulting from both the H infinity and mu synthesis techniques result in excellent performance even when the aircraft performs maneuvers in which the system states vary significantly from their equilibrium design values. Both the H infinity and mu synthesis control laws result in performance which compares favorably with an existing baseline longitudinal control law

    Help on SOS

    Get PDF
    In this issue of IEEE Control Systems Magazine, Andy Packard and friends respond to a query on determining the region of attraction using sum-of-squares methods

    Parameter-Dependent Lyapunov Functions for Linear Systems With Constant Uncertainties

    Get PDF
    Robust stability of linear time-invariant systems with respect to structured uncertainties is considered. The small gain condition is sufficient to prove robust stability and scalings are typically used to reduce the conservatism of this condition. It is known that if the small gain condition is satisfied with constant scalings then there is a single quadratic Lyapunov function which proves robust stability with respect to all allowable time-varying perturbations. In this technical note we show that if the small gain condition is satisfied with frequency-varying scalings then an explicit parameter dependent Lyapunov function can be constructed to prove robust stability with respect to constant uncertainties. This Lyapunov function has a rational quadratic dependence on the uncertainties

    Vibration Attenuation of the NASA Langley Evolutionary Structure Experiment Using H(infinity) and Structured Singular Value (mu) Robust Multivariable Control Techniques

    Get PDF
    This final report summarizes the research results under NASA Contract NAG-1-1254 from May, 1991 - April, 1995. The main contribution of this research are in the areas of control of flexible structures, model validation, optimal control analysis and synthesis techniques, and use of shape memory alloys for structural damping

    Robust Region-of-Attraction Estimation

    Get PDF
    We propose a method to compute invariant subsets of the region-of-attraction for asymptotically stable equilibrium points of polynomial dynamical systems with bounded parametric uncertainty. Parameter-independent Lyapunov functions are used to characterize invariant subsets of the robust region-of-attraction. A branch-and-bound type refinement procedure reduces the conservatism. We demonstrate the method on an example from the literature and uncertain controlled short-period aircraft dynamics
    corecore